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NAVIER-STOKES EQUATIONS
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Abstract

A fast multigrid solver for the steady incompress-
ible Navier-Stokes equations is presented. Unlike
time-marching schemes, this approach uses relaxation
of the steady equations. Application of this method
results in a discretization that correctly distinguishes
between the advection and elliptic parts of the oper-
ator, allowing efficient smoothers to be constructed.
Numerical solutions are shown for flow over a flat
plate and a Karman-Trefftz airfoil. Using collective
Gauss-Seidel line relaxation in both the vertical and
horizontal directions, multigrid convergence behavior
approaching that of O(N) methods is achieved. The
computational efficiency of the numerical scheme is
compared with that of a Runge-Kutta based multi-
grid method.

Introduction
One of the critical needs in computational fluid dynam-
ics 1s faster flow solvers. Multigrid is a well known method
of convergence acceleration that is widely used in Euler
and Reynolds-averaged Navier-Stokes codes. These appli-
cations of multigrid generally are based on the unsteady

equations using some temporal integrator as the smoother,
combined with a full-approximation scheme (FAS) multi-
grid iteration. A common approach is one originally pro-
posed by Jameson.! Starting with the unsteady equations,
a finite-volume spatial discretization with explicit artificial
viscosity is combined with a Runge-Kutta (R-K) time in-
tegration as a smoother. An alternative approach®™? is to
use upwind-differencing and implicit time integration as
the smoother. However, these approaches have resulted in
poor multigrid efficiency. When applied to high Reynolds
number flows over complex geometries, convergence rates
are often worse than 0.99. There is clearly a need to de-
velop substantially more efficient multigrid solvers.
According to Brandt,” one of the major obstacles to
achieving better multigrid performance for advection dom-
inated flows is that the coarse grid provides only a fraction
of the needed correction for smooth error components.
This obstacle can be removed by designing a solver that ef-
fectively distinguishes between the elliptic, parabolic, and
hyperbolic (advection) factors of the system and treats
each one appropriately.
treated by space marching, while elliptic factors can be

For instance, advection can be
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treated by multigrid. The efficiency of such an algorithm
will be essentially identical to that of the solver for the el-
liptic factor only, and thereby attain so-called “textbook”
multigrid efficiency.

Relatively little research has been done in the area of
multigrid algorithms for the Navier-Stokes equations based
upon factorizable discrete schemes. Brandt® has presented
an approach called “distributive relaxation” by which one
can construct smoothers that effectively distinguish be-
tween the different factors of the operator. Using this
approach, Brandt and Yavneh have demonstrated textbook
multigrid efficiency for the incompressible Navier-Stokes
equations.® Their results are for a simple geometry and a
Cartesian grid, using a staggered-grid discretization of the
equations.

Recently, Thomas, Diskin, and Brandt” achieved text-
book multigrid efficiency for high Reynolds number incom-
pressible wake and boundary layer flows associated with a
flat plate. Their scheme uses a staggered grid approach
with distributed relaxation and defect correction. With the
distributive relaxation the system of equations was decom-
posed (i.e., factorized) everywhere, except near boundaries
where they remained coupled. In all calculations Cartesian
grids were used.

Sidilkover and Asher'! introduced a fast multigrid solver
for the incompressible Navier-Stokes equations that does
not require a staggered grid arrangement of flow variables.
With a pressure Poisson formulation as a foundation, a fac-
torizable discrete scheme is derived. In this work also only
simple model problems were solved using uniform Carte-
sian grids.

In this paper, an alternative to distributive relaxation
is presented. It is a generalization of the approach of
Sidilkover and Ascher'' and a continuation of the work
of Roberts and Swanson.!® This approach can be classi-
fied as a method of the Weighted Gauss-Seidel type.® A
conventional vertex-based finite-volume or finite-difference
discretization of the primitive variables is used, avoiding
the need for staggered grids. This simplifies the restriction
and prolongation operations, because the same operator
can be used for all variables. A projection operator is ap-
plied to the system of equations, resulting in a Poisson
equation for the pressure. In the case of the incompressible
Navier-Stokes equations the physical diffusion terms in the
pressure equation require approximation only at bound-
aries. A suitable boundary condition for general geometries
can be derived. The Poisson equation for the pressure may
be treated by Gauss-Seidel relaxation, while the advection
terms of the momentum equation are treated by space-
marching. Because the elliptic and advection parts of the
system are decoupled, ideal multigrid efficiency is possible.
With the present scheme line relaxation is used to treat
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the anisotropy of mesh aspect ratio that generally occurs
in resolving viscous flows.

Mathematical Formulation

The incompressible Navier-Stokes equations in primitive
variables are

Uy + VUy + Pz = V(Um + Uyy)7
UV, + VUy —I—py = V(Umx + Uyy)7

Uz +vy =0,

where u and v are the components of the velocity in
the z and y directions, respectively, p is the pressure, and
the subscripts denote partial differentiation. The density
is taken to be one. The advection-diffusion operator is de-

fined by
Qu = Q - VAv (1)

where Q = ud; + vy, A is the Laplacian operator,
and 0z, 0y are the partial differentiation operators. The
coefficient v is the reciprocal of the Reynolds number,
1/Re. The incompressible Navier-Stokes equations
may be written as

v =

Qu 0 am u
La=| 0 Q. o, |v] =0 (2)
Oz Oy 0 p

Introducing the adjoint to @, defined by

Qu(f) = —0z(uf) — 9y(vf) + A(vf), 3)
a projection operator P is defined:
1 0 0
P=|0 I O (4)
O 0y QF

Applying the projection operator to the Navier-Stokes
equations yields

N Q. 0 0. u
Lg=PLg=| 0 Q. 9, v | +sp.t., (5)
0 0 A

The matrix operator on the right-hand side consists of the
principal part of L, and “s.p.t.” are the subprincipal terms,
in the terminology of Brandt.® These terms arise because
the coefficients u and v in the operators @, and Q) are
not constant. It is important to note that the subprincipal
terms can be ignored for the purpose of constructing a
relaxation scheme.

The operator on the left-hand side of Eq. (5) is upper
triangular. The pressure satisfies a Poisson equation for
which a conventional relaxation method, such as Gauss-
Seidel, can be applied. Upwind differencing of the advec-
tion operator in the momentum equations allows down-
stream relaxation to be used. The strategy used to relax
the system is to first update the pressure. The pressure
update contributes to the velocity update through the gra-
dient terms in the right-hand column of the operator in
Eq. (5). Finally, the velocity components are updated by
relaxing in the streamwise direction.

2
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Fig. 1
grid.

Primary and dual cells on quadrilateral

Discretization

The first step in approximating L is to discretize the
Navier-Stokes equations (2). Consider a typical grid vertex
as shown in Fig. 1. The momentum equations are dis-
cretized using a second-order accurate upwind difference
stencil for the advection part of operator (1), and central
differencing for the physical diffusion contribution. Central
differencing is also used for the pressure gradient term.

Consider the discretization of the term u0;u in the z-
momentum equation, assuming a Cartesian grid for sim-
plicity. The second-order upwind-difference discretization
of this term may be written as

3 ;
udy ulso = %“i—l/m(“m — Ui-1;)

1 .
= s Uiz (Uim1,j — Uizzj)

o (6a)

when u > 0, and

3 .
h
udzulso = sp-ttigya;(Uivry — uiyj)

1

— Eui+3/2,] (Ui+2,J (6b)

_Ui+1u)

when u < 0. Here, the superscript h denotes the discrete
approximation to the corresponding differential operator,
and the average velocity components u;41/2; are

1 .
Uip1/2,; = 5(“i+lu +uiy),

Ui—1/2,5

1 .
= 5(%‘,] +ui-1j).

Analogous expressions may be written for the ua{j opera-
tor.

The projection operator P is applied to the discrete
equations to obtain the residual for the pressure Poisson
equation of Eq. (5). Letting Rp,; be the pressure equation
residual at vertex (¢, 7), the application of P can be written
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in integral form,

o= f (s

dA

(aﬁu + 850)

)

) dz, (7)

~(

where A;; is the area of the control volume centered on
vertex (z,7). This control volume is the area bounded by
the dual grid cell, shown as the dashed lines in Fig. 1.
The discretization of the pressure equation is done by first
discretizing the boxed terms of Eq. (7) on the edges of the
dual grid cell. The evaluation points are shown as solid
squares. To evaluate the gradient of pressure p at the dual
grid face (i — 1/2, j) the partial derivatives are written as

(®)
where ¢ and n are the generalized coordinates correspond-
ing to the 7 and j directions on the grid respectively. The

derivatives 0¢p and Oy p are approximated at the face center

by

<

Qhv+dlp|-

(ﬁzu + 8;‘0)

Pz = pe&a + Pola, Py = peSy + Pnty,

ot =p;; — Pi_
(34 iZ1/2, =DPij —Pi-1,3,
n 1 ;
Onp| = — (Pig+1 FPicij+1 — Pij—1 — Pi—1,j—1),
i—1/2,5 4
(9)

with similar expressions for the faces (i+1/2, ), (¢, 7+1/2),
and (7,5 — 1/2). The gradients of u and v are found the
same way. The grid metric terms &, &y, 1z, and n, are also
evaluated on the dual grid face centers. These expressions
are used in the boxed terms in Eq. (7). The integral (7)
is then evaluated to get the pressure equation residual at
the vertex (i, ), taking the boxed terms to be constant over
each face of the dual grid cell. For a uniform Cartesian grid,
the principal part of the resulting stencil is a conventional
five-point approximation to the Laplacian operating on the
pressure.

With the velocity gradients known at the faces of the
dual grid cell of Fig. 1, one can easily determine the physi-
cal viscous terms in the momentum equations. By applying
Green’s theorem, as in Eq. (7), to the dual grid cell, the
Laplacian in Au and Aw is approximated by

Au = ?{ (uzdy — uydz),

BA;;

Av = 7{ (vady — vydz),
A

(10)

Viscous terms also appear in the pressure equation,
which can be written as
Ap = —0z[uug + vuy)] —

9y [uvas + vuy)]

T o[0.(Au) + 0, (Av)], (1)
where the terms on the right side of (11) are subprin-
cipal terms with respect to relaxation. If the functions
u(z,y) and v(z,y), as well as their spatial derivatives, are
continuous, then the order of differentiation does not mat-

ter. Consider a two-dimensional flow domain where these

3
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functions and their derivatives are continuous. Then, in
the interior of the domain, the derivatives of the viscous
contributions cancel with the application of the continuity
equation.

At a solid boundary the viscous terms do not cancel.
The inviscid subprincipal terms of Eq. (11) vanish when
the no-slip conditions are applied, as in viscous flows. The
pressure equation reduces to

Ap = v[0:(Au) + 8y (Av)], (12)
In the discrete problem (12) is approximated for a half dual
cell at the boundary. From the momentum equations,

Pzlin = I/(Au‘)hl, (13)
Pylin = v(Av)i,
where 5 = 1 corresponds to the surface boundary. The
discrete form of Eq. (12) provides the necessary boundary
condition for pressure. The present approach for treating
the viscous terms in the pressure equation is similar to that

of Sidilkover and Asher.!!

Solution Procedure

Rather than discretizing Eq. (5) directly, the first step
of numerical solution procedure is to discretize Eq. (2).
The relaxation scheme is constructed by applying the pro-
jection operator P at the discrete level rather than the
differential level. A sequence of grids Gx,Grx—1,...,Go is
used, where G is the finest and Go the coarsest. Let ik
be the discrete approximation to the operator L and qx
be the solution on the k-th grid. This system has the
form Lka = 1}, where the entries of Lk are 3 x 3 block
matrices which operate on the unknowns (u,v p) at each
grid vertex. A general iteration scheme is constructed by
writing the operator Lk as Lk = M} — Ng, where the
splitting is chosen such that My is easily inverted. Lexico-
graphic Gauss-Seidel is obtained by taking M to be the
block lower-triangular matrix resulting from ignoring the
blocks above the diagonal of ik A further simplification
is obtained if the diagonal blocks of My contain only those
entries corresponding to the principal part of the operator.
Because the operator in Eq. (5) is upper triangular, the di-
agonal blocks will then be 3 x 3 upper triangular matrices.

Letting qf be the n-th iterate of the solution, the itera-
tion is

qun+l =1, + quz.

Because the operator Lk is nonlinear, My and Ny will be

functions of qj and q"+1. Letting dq; = q"‘H —qp, the
iteration may be rewritten as
Mkéqz =1, — f;qu (14)

Because My, is block lower-triangular, éqj is found by for-
ward substitution and inverting a 3 x 3 diagonal block at
each vertex. The diagonal blocks are upper triangular and
are easily inverted.

If upwind differences are used for the advection opera-
tor (1) and the grid points are ordered in the flow direction,
then the 3 x 3 blocks of N will have zeroes in the first two
rows. In this case, lexicographic Gauss-Seidel relaxation is
equivalent to space-marching of the advection terms. The
advected error is effectively eliminated in one relaxation
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sweep and the convergence rate becomes that of the Pois-
son equation for the pressure. It is possible to get ideal
multigrid convergence rates for the system because each
component, of the error is treated appropriately.

In the application of line Gauss-Seidel relaxation the
unknowns along a given grid line are determined simulta-
neously. A scalar tridiagonal matrix inversion is required
for the pressure equation.
cretization of the advection terms, a scalar pentadiagonal
matrix inversion is necessary for the momentum equations.

A straightforward FAS multigrid iteration is applied to
the system of equations. Let Ly_1 be the coarse grid op-
erator, I¥_| be the fine-to-coarse grid restriction operator,
and [ ;: ~! be the coarse-to-fine grid prolongation operator.
If G is the current solution on grid &, the residual on this
gridis ry =1, — ikdk This leads to the coarse-grid equa-
tion

Due to the second-order dis-

(15)

After solving the coarse-grid equation for qr_1, the fine-
grid solution is corrected by

Leoiqet =fi_1 = IF_jve + Le (f;f_lflk) .

ar — @+ 17" (qk_l - 1}:_1qk) . (16)
Equation (15) is solved by applying the same relaxation
procedure that is used to solve the fine-grid equation.
Multigrid is applied recursively to the coarse-grid equa-
tion. On the coarsest grid, many relaxation sweeps are
performed to insure that the equation is solved completely.
A conventional W-cycle is used.

Results

The numerical scheme described in the previous sections
has been applied to two incompressible, viscous flow prob-
lems. As an initial evaluation of the scheme, high Reynolds
number flow past a flat plate is considered. For the sec-
ond problem flow past a symmetric Karman-Trefftz airfoil
is solved on two different mesh topologies.

The computational domain for the flat plate simulation
is displayed in Fig. 2. The inflow boundary (z = 0), outflow
boundary (z = 3), and the upper boundary (y = 1) are lo-
cated one plate length away from the plate. At the inflow
boundary, the free-stream conditions (uso = 1, veo = 0,
Pso = —0.5) are specified. For the upper and downstream
boundaries the pressure is set to pe and the velocity com-
ponents are obtained by solving the momentum equations.
On the lower boundary symmetry conditions are applied
upstream and downstream of the plate. The no-slip condi-
tions are imposed on the plate (z =1 to z = 2). A wake
flow develops downstream of the plate that diffuses slowly
in the present case of laminar flow.

The finest grid used for the flat plate calculations con-
sisted of 192 x 96 cells. In order to resolve the boundary
layer on the plate the grid was clustered at y = 0 and
stretched geometrically to y = 1 (see Fig. 2). For this grid
the minimum spacing in the y direction is 0.002, and the
stretching factor is 1.03. A series of nested coarse grids was
obtained by coarsening the fine grids by a factor of two in
each coordinate direction. In all cases shown below, the
coarsest grid was 12 x 6 cells.

Line Gauss-Seidel relaxation was used for the computa-
tions. The complete relaxation process involves one sweep
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Fig. 2 Domain of flat plate flow with 48 x 24 cell
grid.
10 Laminar Flat Plate Flow A
ol Re=10* X/L=05 A
n
8k A
. n
7k Theory (Blasius) A
[ 25 x 13 grid
6F L] 49 x 25
n i 97 x 49
St A 193X 97
4 -
3 -
2 -
1 -
%%0 0.2 0.4 0.6 0.8 1.0
u/u,
Fig. 3 Velocity profiles at midplate location for

laminar flow over flat plate (Re = 10,000).

with vertical line solves and one sweep with horizontal line
solves, along with some additional work near the plate.
The relatively small amount of additional work is needed
due to the coupling of the flow equations near the plate.
Moreover, the points for 3 < 3 are relaxed with about three
sweeps of horizontal solves. For the vertical line solves
relaxation begins at the inflow boundary (z = 0) and pro-
ceeds to the outflow boundary (z = 3). In the case of the
horizontal line solves relaxation starts at the outer bound-
ary (y = 1) and continues to the inner boundary (y = 0).
A W(1,1) multigrid cycle was used; that is, one complete
relaxation process was performed on each grid before re-
stricting to the coarse grid, and one complete relaxation
process was performed after the coarse-grid correction was
added to the fine-grid solution.

The Reynolds number of the flow past the flat plate
is 10,000. Figure 3 shows the variation of the velocity
component u nondimensionalized by the boundary-layer
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Fig. 4 Convergence behavior for laminar flow over
flat plate (Re = 10,000). Open symbols for pressure
residuals; closed symbols for z-momentum residu-
als.

10 - Laminar Flat Plate Flow
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8 I
7E |—— Theory (Blasius)
[ 10 cycles
6 ] 1 cycle
n O 2 cycles
St 193 x 97 grid
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1 I
O(.! | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

u/J

e

Fig. 5 Variation with multigrid cycles of velocity
profile at midplate location for laminar flow over
flat plate (Re = 10,000, 193 x 97 grid).

edge velocity (u.) with the scaled normal coordinate 7.
The coordinate n = 5y/d, where § is the thickness of the
boundary layer. The computed velocity profiles are at the
midplate location. Starting with the 96 x48 cell grid, which
has ten points in the boundary layer, there is excellent
agreement with the classical Blasius solution. In Fig. 4
the convergence behavior of the scheme is shown. The Lo
norm of the residuals for the pressure and z-momentum
equations is given for each W (1,1) cycle. For most of the
grids the residuals have been reduced more than 6 orders of
magnitude in 10 cycles. The convergence rate on the finest
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Fig. 6 Near field of 128 x 64 cell O-type grid for
computing laminar flow over Karman-Trefftz airfoil
(Re = 200).

grid is 0.17 per cycle. As indicated in Fig. 5, the solution
on the finest grid can nearly be obtained in a FMG process,
involving only one multigrid cycle on each grid considered
in Fig. 4.

Solutions were obtained for incompressible, viscous flow
(Re = 200 based on chord) around a nonlifting Karman-
Trefftz airfoil. Previously, a form of the present numerical
scheme was applied to inviscid airfoil flows, and an O-type
mesh topology was used. So, initially in the present work,
the same mesh topology was considered for viscous flows.

A Kéarman-Trefftz airfoil was generated from a cylinder
by a conformal mapping.® A trailing-edge angle of 10° is
used, resulting in an airfoil of approximately 15% thick-
The airfoil flow is solved on a finite domain. At
inflow points along the outer boundary the total pressure
and flow inclination angle are specified. For outflow points
the pressure is specified. The specified quantities are de-
termined from the complex potential function for inviscid

ness.

flow past the airfoil.

A fine grid for the airfoil calculation (512 X 256 cells)
was constructed by generating an O-grid in the circle plane
and mapping it to the airfoil plane. The near field of the
128 x 64 grid is displayed in Fig. 6. The outer boundary
of the domain is roughly 3 chords from the airfoil. The
coarsest grid in the grid sequence used for the multigrid
solver contains 16 x 8 cells. On each grid a relaxation
sweep started at the stagnation streamline, proceeded over
the upper half of the domain, and then over the lower half
of the domain. The relaxation sweep with radial solves was
followed by sweeps with azimuthal solves near the airfoil,
as in the flat plate case.

Convergence behavior in the FMG process for the air-
foil calculations with the O-type mesh is shown in Fig. 7.
On the finest grid the asymptotic convergence rate for
the z-momentum and pressure equations is about 0.14 per
cycle. There is somewhat slower convergence on the coarser
meshes, with about five orders of magnitude reduction of
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Karman-Trefftz Airfoil, Re = 200
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Fig. 7 Convergence behavior for laminar flow over
nonlifting Karman-Trefftz airfoil (Re = 200, O-type
mesh topology). Open symbols for pressure resid-
uals; closed symbols for z-momentum residuals.
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Fig. 8 Near field of 128 x 64 cell C-type grid for
computing laminar flow over Karman-Trefftz airfoil
(Re = 200).

the residuals on the 64 x 32 cell grid. Such behavior was
also observed by Roberts and Swanson'® for inviscid flow.

To facilitate the resolution of the near and far wake
regions, especially in the case of laminar flow where the
mixing rate due to the physical diffusion is slow, a C-type
mesh was generated for the airfoil calculations. A hyper-
bolic grid generator was used to create the mesh. The
near field part of the grid is depicted in Fig. 8. In Fig. 9
the convergence histories for this mesh topology are pre-
sented. The average rate of reduction of the residual on
the 512 x 256 grid is 0.19 for the pressure equation and
0.22 for the xz-momentum equation. The slower rate for
the z-momentum equation is surprising since the rate of
convergence of the scheme should be dictated by the ellip-
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Karman-Trefftz Airfoil, Re = 200

Log(residual)

Cycles

Fig. 9 Convergence behavior for laminar flow over
nonlifting Karman-Trefftz airfoil (Re = 200, C-type
mesh topology). Open symbols for pressure resid-
uals; closed symbols for z-momentum residuals.

tic factor in this factorizable scheme. In addition, we do
not observe this behavior with O-type mesh computation.

In order to estimate the work required by the present
and R-K schemes, we consider an operation count based on
residual evaluations and the the number of cycles to achieve
a specific reduction in residuals. For a W(m,n) multigrid
cycle, there are m + n residual evaluations on the fine grid.
The restriction operator requires a residual calculation on
the fine grid and one on the next coarser grid, with work
corresponding to 1/4 that on the fine grid. In this assess-
ment we neglect the cost of interpolating the residuals and
solutions between the grid levels. For a W(m, n) cycle, we
have that®

WU

T (m + +1+1)(1+1+1+ )
chycleNm " 4’ 2 4 ’

5,
:2(m—|—n—|—1)7

where WU means work unit. The WU per cycle for the cur-
rent scheme with a W(2,1) cycle with only radial relaxation
sweeps (neglecting additional work at surface boundary
with azimuthal solves) is 8.5. With the five-stage R-K
scheme and a W(1,0) cycle, the WU per cycle is 12.5.

With the present scheme an additional residual evalu-
ation is incurred due to the Gauss-Seidel updating of the
solution. If we include that, the ratio of residual evalu-
ations for the present scheme to that of the R-K scheme
would be increased to 10.5 for the W(2,1) cycle used on
the C-type grid and 8.5 for the W(1,1) cycle used for
the O-type grid. Since we fully expect to have about the
same number of residual evaluations for the different mesh
topologies, the estimate of WU per cycle required by the
present scheme is not altered.

For the two schemes there is a difference in computa-
tional effort resulting from scalar tridiagonal and pentadi-
agonal inversions. As indicated previously each relaxation
sweep of the present scheme requires one tridiagonal solve
and two pentadiagonal solves (corresponding to the three
flow equations) for the grid lines not in the direction of the
relaxation. Since the operation count for a pentadiagonal
inversion is about two times that for a tridiagonal inversion,
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the work required on the fine grid with m+n = 3 is roughly
proportional to that for 15 tridiagonal solves. For the R-
K scheme there is a scalar tridiagonal inversion for each
flow equation, each coordinate direction, and each of the
five stages due to the residual smoothing procedure used
to extend stability. So, in the particular case of three flow
equations, the work due to this part of the scheme is pro-
portional to 30 tridiagonal solves. Thus, the R-K scheme
considered here'? requires about two times as much work
as the present scheme due to inversions. It should also
be pointed out that the R-K scheme used here is a (5,3)
scheme, which means that the complete residual, including
viscous and numerical dissipation terms, is evaluated only
on three stages.

In order to roughly estimate the total speedup (i.e.,
product of WU per cycle and number of cycles for desired
level of convergence) of the present scheme relative to the
R-K scheme, we not only consider residual reduction for
the z-momentum equation but also the convergence of the
drag coefficient (Cd). For a residual reduction of four or-
ders of magnitude, the present scheme is at least an order
magnitude faster than the R-K scheme for the laminar air-
foil flow. This speedup is also evident in Figs. 10 and 11,
which show the variation of Cyq with multigrid cycles for the
two schemes. The speedup of the present scheme on the
finer meshes (mesh density > 256 x 128 cells) can exceed
a factor of 25.

Pressure and velocity contours for the solution on the
512 x 256 C-type grid are depicted in Figs. 12 and 13. The
thickness of the attached boundary layer is about 0.25 air-
foil chords, and there are about 70 points in the boundary
layer at the midchord location. Slow diffusion of the airfoil
wake is evident. In Figs. 14 and 15 the pressure and skin
friction computed with the present scheme on various grid
densities are compared with the fine grid results obtained
with the R-K scheme (where the free-stream Mach num-
ber was set to 0.1). There is generally very good agreement
starting with the 128 x 64 grid.

Concluding Remarks

A multigrid algorithm with essentially O(N) behavior
has been developed for the steady Navier-Stokes equations.
It has the virtue of simplicity; conventional finite-difference
or finite-volume discretizations of the governing equations
may be used, allowing flexibility in the choice of the under-
lying numerical method. Appropriate discretization and
efficient treatment of the pressure boundary condition has
been demonstrated. Solutions have been obtained for lami-
nar flow past a flat plate with essentially texbook multigrid
efficiency. Furthermore, the multigrid method has been
used to solve viscous flow with curvature effects. Fast con-
vergence was obtained for this case also. With the present
scheme more than an order of magnitude reduction in com-
putational effort has been achieved when compared with a
R-K based multigrid scheme.

Further studies of the present scheme are required to de-
termine the effects of mesh aspect ratio and grid stretching
on convergence rate, and thus, on the discrete factorizabil-
ity of the algorithm. While significant gains in computa-
tional efficiency have been achieved for laminar flow, much
greater gains (i.e., two orders of magnitude) are anticipated
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with the extension of factoriazable schemes to allow com-
putation of turbulent flows.
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Fig. 10 Convergence history of total drag for
laminar flow over nonlifting Karman-Trefftz airfoil
(Re = 200).
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Fig. 11 Convergence history with R-K scheme of
total drag for laminar flow over nonlifting Karman-
Trefftz airfoil (Re = 200).
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Fig. 12 Pressure contours for laminar flow over
nonlifting Karman-Trefftz airfoil (Re = 200).
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Fig. 13 Velocity contours for laminar flow over
nonlifting Karman-Trefftz airfoil (Re = 200).
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Karman-Trefftz Airfoil, Re_ = 200, o. = 0°

06
L Surface Pressure
041
02F
oF
02
0.4 F 512 x 256 (R-K)
o 5 ——s=—— 32x16
06k 2 64x32
“F — — — - 128x64
08k — — — - 256x128
r 512 x 256
F
1.2F d
= ﬁ
1.4
:\ | - TR I TR I 1
16 0 0.2 0.4 0.6 0.8 1

Fig. 14 Surface pressure distribution for laminar
flow over nonlifting Karman-Trefftz airfoil (Re =
200).
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Fig. 15 Surface skin-friction distribution for lam-
inar flow over nonlifting Karman-Trefftz airfoil
(Re = 200).
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